

Time required by veterinarian to perform veterinary acts in routine: a regression analysis

Abdouttalib I., Lhermie G. and Raboisson D.

https://veteconomics.envt.fr/

Oral communication : ISESSAH Conference

13th November 2020

Context

Veterinary activity

Public health

Private market: client-paid services

Veterinary practice: firm Rational behavior: maximization of profit

Material and Method : Data collection and mining

Sample of veterinary practices

Four veterinary general mixed practices (companion animals & farm producing animals)

5 to 12 associate/employed/assistants

Revenue

Average annual revenue for acts :1,200,000€

Average share for CA : 40% Average share for FPA : 56% Average share for equine : 4%

Material and Method : Data collection and mining

- Similar sub-categories into FPA and equine activities have been grouped : the share of revenue for equine was low (4%) and the same act was expected to be equally time-consuming in these two sectors
- All categories considered similarly time-consuming according to author's experience, were grouped

Material and method : Multivariable linear regression model

Y= β 0 + β 1X1 + β 2X2+.... + β nXn+ ε

- Y : number of days worked (calculated) per month
- X : number of activities per month, for each activity
- $\boldsymbol{\beta}\,$: time required to perform each activity

Material and method: calculation of days worked per month

Hypothesis : day with an invoice made = day worked

The number of days worked during each of the 36 months by each veterinarian was calculated from *the invoices dates*

How to validate the hypothesis?

Material and method: calculation of days worked per month

G

Comparison of declared average days worked per year and calculated average days worked per year for 3 veterinary practices

	Year	Average days worked per year declared (days/year)	Average days worked per year calculated (days/year)
Veterinary practice #1	2015	213	188
	2016	186	182
	2017	216	175
Veterinary practice #2	2015	209	197
	2016	216	187
	2017	215	187
Veterinary practice #3	2015	200	142
	2016	197	140
	2017	239	195

Results

nationale vétérinaire toulouse

	Estimate	Std.Error	P-value
FPA consultation	0.0859	0,006	<2 ^e -16 ***
CA consultation	0.0546	0,005	<2 ^e -16 ***
CA surgery	0.1793	0,018	<2 ^e -16 ***
Herd monitoring	0.3286	0,054	<2 ^e -16 ***
			R2 = 69%

Results

0

Assuming that veterinarians worked 9 hours per day in average

Veterinary act	Working time (minutes)	Confidence interval
FPA consultation	46	(95%CI=39-55)
CA consultation	29	(95%CI=19-36)
CA surgery	97	(95%CI=77-116)
Herd monitoring	177	(95%CI=159-190)

Discussion

\rightarrow Comparison of the results of two approaches (survey/data)

Veterinary act	Working time calculated based on a data approach	Working time declared based on a survey approach
CA consultation	29min	18min
CA surgery	97min	182min
FPA consultation	46min	41min
Herd monitoring	177min	48min

- \rightarrow The results are slightly different between the two approaches,
- → The travelling time to the farms is not included in the herd monitoring time (survey approach),
- → The external validity of our results needs to be improved, but the method appears to be robust,

Conclusion

The use of the billing information for the calculation of working time , is an original approach and valorization of existing data,

□ Interest in knowing the working time to qualify the economic model,

Opening on work around other important parameters : billed rate of acts, environment ...

These results can therefore be used to calibrate a mathematical model whose objective is to optimize profit under time constraints,

Acknowledgements

- Didier Raboisson
- Guillaume Lhermie
- Youba Ndiaye
- Ahmed Ferchiou

Work supported by

Antimicrobials in Agriculture

